Swarm Intelligence for Multiobjective Optimization of Extraction Process
نویسندگان
چکیده
Multi objective (MO) optimization is an emerging field which is increasingly being implemented in many industries globally. In this work, the MO optimization of the extraction process of bioactive compounds from the Gardenia Jasminoides Ellis fruit was solved. Three swarm-based algorithms have been applied in conjunction with normal-boundary intersection (NBI) method to solve this MO problem. The gravitational search algorithm (GSA) and the particle swarm optimization (PSO) technique were implemented in this work. In addition, a novel Hopfield-enhanced particle swarm optimization was developed and applied to the extraction problem. By measuring the levels of dominance, the optimality of the approximate Pareto frontiers produced by all the algorithms were gauged and compared. Besides, by measuring the levels of convergence of the frontier, some understanding regarding the structure of the objective space in terms of its relation to the level of frontier dominance is uncovered. Detail comparative studies were conducted on all the algorithms employed and developed in this work.
منابع مشابه
Hybrid PS-ACO Algorithm in Achieving Multiobjective Optimization for VLSI Partitioning
In this paper multiobjective optimization problem simultaneously optimized using hybrid PS-ACO algorithm has been attempted. The methodology used in this paper is based upon the information sharing and movement of swarms or particles in a search space, and further applying ACO on the result obtained by the PSO. Multiobjective optimization problems are present at physical design level at partiti...
متن کاملOptimisation par essaim particulaire : adaptation de tribes à l'optimisation multiobjectif. (Particle swarm optimization : adaptation of tribes to the multiobjective optimization)
متن کامل
Swarm Intelligence based Soft Computing Techniques for the Solutions to Multiobjective Optimization Problems
The multi objective optimization problems can be found in various fields such as finance, automobile design, aircraft design, path optimization etc. This paper reviews some of the existing literature on multi objective optimization problems and some of the existing Swarm Intelligence (SI) based techniques to solve these problems. The objective of this paper is to provide a starting point to the...
متن کاملMultiobjective Optimization Using Parallel Vector Evaluated Particle Swarm Optimization
This paper studies a parallel version of the Vector Evaluated Particle Swarm Optimization (VEPSO) method for multiobjective problems. Experiments on well known and widely used test problems are performed, aiming at investigating both the efficiency of VEPSO as well as the advantages of the parallel implementation. The obtained results are compared with the corresponding results of the Vector Ev...
متن کاملStochastic Fractal Based Multiobjective Fruit Fly Optimization
The fruit fly optimization algorithm (FOA) is a global optimization algorithm inspired by the foraging behavior of a fruit fly swarm. In this study, a novel stochastic fractal model based fruit fly optimization algorithm is proposed for multiobjective optimization. A food source generating method based on a stochastic fractal with an adaptive parameter updating strategy is introduced to improve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1611.06086 شماره
صفحات -
تاریخ انتشار 2016